中国食品网

有效数字及运算规则

   2010-09-01 中国食品网中食网1172
一、 有效数字

为了取得准确的分析结果,不仅要准确测量,而且还要正确记录与计算。所谓正确记录是指记录数字的位数。因为数字的位数不仅表示数字的大小,也反映测量的准确程度。所谓有效数字,就是实际能测得的数字。

有效数字保留的位数,应根据分析方法与仪器的准确度来决定,一般使测得的数值中只有最后一位是可疑的。例如在分析天平上称取试样0.5000g,这不仅表明试样的质量0.5000g,还表明称量的误差在±0.0002g以内。如将其质量记录成0.50g,则表明该试样是在台称上称量的,其称量误差为0.02g,故记录数据的位数不能任意增加或减少。如在上例中,在分析天平上,测得称量瓶的重量为10.4320g,这个记录说明有6位有效数字,最后一位是可疑的。因为分析天平只能称准到0.0002g,即称量瓶的实际重量应为10.4320±0.0002g,无论计量仪器如何精密,其最后一位数总是估计出来的。因此所谓有效数字就是保留末一位不准确数字,其余数字均为准确数字。同时从上面的例子也可以看出有效数字是和仪器的准确程度有关,即有效数字不仅表明数量的大小而且也反映测量的准确度.

二、有效数字中"0"的意义

0"在有效数字中有两种意义:一种是作为数字定值,另一种是有效数字.例如在分析天平上称量物质,得到如下质量:

物质

称量瓶

Na2CO

H2C2O4·2H2O

称量纸

质量(g)

10.1430

.1045

0.2104

0.0120

有效数字位数

6位

5

4

3

 以上数据中“0”所起的作用是不同的。在10.1430中两个“0”都是有效数字,所以它有6位有效数字。在2.1045中的“0”也是有效数字,所以它有5位有效数字。在0.2104中,小数前面的“0”是定值用的,不是有效数字,而在数据中的“0”是有效数字,所以它有4位有效数字。在0.0120中,“1”前面的两个“0”都是定值用的,而在末尾的“0”是有效数字,所以它有3位有效数字。

综上所述,数字中间的“0”和末尾的“0”都是有效数字,而数字前面所有的“0”只起定值作用。以“0”结尾的正整数,有效数字的位数不确定。例如4500这个数,就不会确定是几位有效数字,可能为2位或3位,也可能是4位。遇到这种情况,应根据实际有效数字书写成:

      4.5×103                       2位有效数字

        4.50×103                        3 位有效数字

       4.500×103                       4 位有效数字

因此很大或很小的数,常用10的乘方表示。当有效数字确定后,在书写时一般只保留一位可疑数字,多余数字按数字修约规则处理。

对于滴定管、移液管和吸量管,它们都能准确测量溶液体积到0.01mL。所以当用50mL滴定管测定溶液体积时,如测量体积大于10mL小于50mL时,应记录为4位有效数字。例如写成24.22;如测定体积小于10mL,应记录3位有效数字,例如写成8.13 mL。当用25mL移液管移取溶液时,应记录为25.00mL;当用5mL吸取关系取溶液时,应记录为5.00mL。当用250mL容量瓶配制溶液时,所配溶液体积应即为250.0mL。当用50mL容量瓶配制溶液时,应记录为50.00mL

    总而言之,测量结果所记录的数字,应与所用仪器测量的准确度相适应。

三、数字修约规则

我国科学技术委员会正式颁布的《数字修约规则》,通常称为“四舍六入五成双”法则。四舍六入五考虑,即当尾数≤4时舍去,尾数为6时进位。当尾数4舍为5时,则应是末位数是奇数还是偶数,5前为偶数应将5舍去,5前为奇数应将5进位。

这一法则的具体运用如下:

a. 28.17528.165处理成4位有效数字,则分别为28.1828.16

b. 若被舍弃的第一位数字大于5,则其前一位数字加1,例如28.2645处理成3为有效数字时,其被舍去的第一位数字为6,大于5,则有效数字应为28.3

c. 若被舍其的第一位数字等于5,而其后数字全部为零时,则是被保留末位数字为奇数或偶数(零视为偶),而定进或舍,末位数是奇数时进1,末位数为偶数时还进1,例如28.35028.25028.050处理成3位有效数字时,分别为28.428.228.0

d. 若被舍弃的第一位数字为5,而其后的数字并非全部为零时,则进1,例如28.2501,只取3位有效数字时,成为28.3

e. 若被舍弃的数字包括几位数字时,不得对该数字进行连续修约,而应根据以上各条作一次处理。如2.154546 ,只取3位有效数字时,应为2.15,二不得按下法连续修约为2.16

2.1545462.154552.15462.1552.16

四、有效数字运算规则

前面曾根据仪器的准确度介绍了有效数字的意义和记录原则,在分析计算中,有效数字的保留更为重要,下面仅就加减法和乘除法的运算规则加以讨论。

a. 加减法:在加减法运算中,保留有效数字的以小数点后位数最小的为准,即以绝对误差最大的为准,例如:

0.0121+25.64+1.05782=?

正确计算                     不正确计算

0.01                              0.0121  

25.64                              25.64

+    1.06                        +      1.05782

    ———————                      ———————    

          26.71                              26.70992              

上例相加3个数字中,25.64中的“4”已是可疑数字,因此最后结果有效数字的保留应以此数为准,即保留有效数字的位数到小数点后面第二位。

b. 乘除法:乘除运算中,保留有效数字的位数以位数最少的数为准,即以相对位数最大的为准。例如:

0.012×25.64×1.05782=?

以上3个数的乘积应为:

0.0121×25.6×1.01=0.328

在这个计算中3个数的相对误差分别为:

        E%=(±0.0001)/0.0121×100=±8

        E%=(±0.01)/25.64×100=±0.04

        E%=(±0.00001/1.05782×100=±0.0009

显然第一个数的相对误差最大(有效数字为3位),应以它为准,将其他数字根据有效数字修约原则,保留3位有效数字,然后相乘即可。

c. 自然数,在分析化学中,有时会遇到一些倍数和分数的关系,如:

        H3PO4的相对分子量/3=98.00/3=32.67

水的相对分子量=2×1.008+16.00=18.02

在这里分母“3”和“2×1.008”中的“2”都还能看作是一位有效数字。因为它们是非测量所得到的数,是自然数,其有效数字位数可视为无限的。

在常见的常量分析中,一般是保留四位有效数字。但在水质分析中,有时只要求保留2位或3位有效数字,应视具体要求而定。


 
举报 0 收藏 0 打赏 0
 
更多>同类检验技术
推荐图文
推荐检验技术
点击排行
网站首页  |  关于我们  |  新手帮助  |  信息发布规则  |  版权隐私  |  服务条款  |  联系我们  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报